Modern security landscape, trends in malware and counteracting security controls

Malware is evolving constantly. The threat landscape is so dynamic that yesterday’s news is not news today. The malware business is a full-blown industry that can easily size up with the IT security industry.

Recent major security breaches:

NiceHash, the largest Bitcoin mining marketplace, has been hacked, which resulted in the theft of more than 4,700 Bitcoins worth over $57 million (at the time of breach) – more than 70 million now. The breach is reported to have happened via vulnerability on their website.

Teamviewer vulnerability – critical vulnerability discovered in the software that could allow users sharing a desktop session to gain complete control of the other’s PC without permission.

By using naked inline hooking and direct memory modification, in addition, the PoC allows users to harness control of the mouse without altering settings and permissions.

Uber – Uber’s October 2016 data breach affected some 2.7 million UK users, it has now been revealed. Uber did not disclose until now and paid a ransom (100k USD). Lawsuits to follow. Information held by a third-party cloud service provider used by Uber was accessed by the two hackers.

PayPal subsidiary breach – ID Theft for 1.6 Million Customers. PayPal Holdings Inc. said that a review of its recently acquired company TIO Networks showed evidence of unauthorized access to the company’s network, including some confidential parts where the personal information of TIO’s customers were stored.

Numerous unidentified security vulnerabilities were found in the platform (bugs that lead to security related vulnerabilities). Evidence of a breach discovered. Forensics are under way.

Equifax – breach allowed 15.2 million UK records to be made public (and 145 Million US records). Bad guys used a known vulnerability in an internet accessible service for initial penetration.

Recent Apple Root vulnerability – Any Mac system running macOS High Sierra 10.13.1 or 10.13.2 beta was vulnerable. There was no real exploit, you just typed root for username and keep the password empty and keep pressing enter and after several tries you are logged in with root rights.  A logic error existed in the validation of credentials or simply a bug.

Malware

Making malware today has become more available. Malware development processes does not differentiate much from any software development, people use online available sources for much of the code, and will combine it together to their liking and purpose. A lot of the bad guys would also release the code for their creations which can later be changed and further modified (example Petya and NotPetya). Even code stolen from the government cyber agencies is now used in modern malware (example EternalBlue use in multiple malware as a way of effective horizontal spread – used in WannaCry).

Another typical trend in malware these days is to be modular. It will install and run multiple services on the infected host in specific order after the initial infection.

1st stage – there is always the initial infection – usual methods here are unpatched vulnerability of a running service or in the cases of more advanced malware – the use of Zero-Day vulnerability. Example here is the EternalBlue exploit of the SMBv1 service. Usually the delivery of the exploit is via Internet on accessible services or once inside the organization, horizontally meaning within the internal networks of the organization. That stage ends with having temporary access to the system and dropping off the malware in questions

2nd stage – privilege escalation – will try to gather credentials from the infected device in different ways – cracking the specific files on the system that holds the accounts, trying to locate account information on the local drives, or even brute-forcing credentials. These credentials will be leveraged for either privilege escalation on that machine or access to other similar machines on the network and infecting them.

3rd stage – installing a backdoor. Making sure the access is permanent

4th stage – doing the job. Downloading all necessary pieces of malware to finish the job.  If that is a crypto virus it will download the tools to encrypt the sensitive files, also change desktop or even download application to show the user the ransom note, a tool to clean keys and traces of the encryption etc.

5th stage – spread, can be done again by using vulnerable services within the organization or by leveraging any credentials that are discovered in the privilege escalating process and using legit sys admin management channels such as WMI and PSExec. Sometimes the spread can be done before or simultaneously with the 4th stage as not to warn the organization of its presence before it managed to infect multiple systems.

Types of malware:

It is very hard to categorize malware these days. Most traditional classification such as: virus, worm, trojan, backdoor does not really cut it anymore as most modern malware shares the features of all of them (again example WannaCry, it is a virus, it is a worm as it spreads itself and it is a backdoor as it does install a hidden unauthorized way into the compromised system, and on top of that does encryption).

Ransomware – attacks aimed at making money by forcing victims to pay for accessing again their personal files

DDoS attacks – attacks aimed at crippling or disabling services at the victim

Attacks aimed at stealing sensitive information – attacks aimed at spying on users and gathering sensitive data – credentials, S/N, banking details, impersonating info (DOB etc.), private communications etc

Zombie/Botnet – attacks that rely on the collective resources of multiple compromised hosts that are managed by a central C&C (command and control). Can be used for multiple things, DDoS, span relay, stealing sensitive information from users

APT attacks – Advanced Persistent Attacks. Specially crafted attacks, usually used in nation-state cyber activities. Example could be the attack versus Iranian Nuclear Program

IoT related attacks – again these blur with other, as normally the compromised IoT devices are used for other kind of attacks (DDoS). This kind of IoT are very typical these days, the IoT devices are cheap network connected devices that were not designed with security in mind. The Mirai attack was a shining example on how powerful attacks can be executed using a Botnet of compromised IoT devices (DYN case). Furthermore, the number of IoT will continue to grow.

Mobile devices – attacks that are specific for mobile devices, most dangerous ones are compromised apps that go under the radar and give away sensitive information from the smart phone (ID theft, or sell personal info to ad companies, or steal financial data (credit card info etc.)). There are no such thing as free apps, they steal data from you and use it in illegal way to monetize it and make profit.

Phishing / Spear-Headed Phishing – Becoming more and more popular, bad actors will put in the effort now to get to know the victim so they can deliver the malware content in a shape and form that is interesting to the target

Some top Cyber Security Trends:

  1. Less number of security breaches (due to more investments in in IT Security) reported globally but more impact upon breach.
  2. More time is needed for the detection of breached (average time in 2016 was 80.6 days, in 2017 it is 92.2 days)
  3. Predictions of crime damage costs to sky rocket in the next 3 years (by 2021) to 6 Trillion USD
  4. Successful phishing and ransomware attacks are climbing
  5. Global ransomware damage cost estimated to exceed 5 Billion USD by the end of 2017

Data was gathered by CSO 2017 Cyber Security report (csoonline.com)

Summary of the evolution of Security Controls

  • Intrusion Prevention (Advanced Network Threat Detection) becomes a must

Advanced IPS systems have replaced the traditional status firewalls. They incorporate multiple security technologies (signatures, behavior analytics, heuristics, sandboxing, central intelligence feeds etc.), to be able to successfully detect intrusion events and malware.

  • Logging and Alerting platforms more important than ever

Logging and alerting are hugely important for each organization to be able to both proactively secure your network but in case of a breach to re-actively do forensics

  • Data Loss Prevention is gaining momentum

DLP is becoming more popular as numerous breaches that year were connected to leaked sensitive information (ID theft in the Equifax and Uber)

  • Endpoint security/malware is again in the front lines of combating malware

The focus of the security has shifted in the recent years from the network to the endpoint. Network and endpoint security controls should collaborate to create a strong security posture for your organization

  • Systemwide threat defense is becoming necessary to adequately protect your organization

Security has become closely connected to intelligence. All major security vendors syphon off as much data from the internet as they can just, so they can filter through it in a strive to find first the zero-day exploits and provide first adequate protection for their customers. All parts of the network infrastructure can be used as sensors and deliver intelligence data to a centralized place that provides the analysis (big data).

IoT Reaper Ransomware

New Ransomware on the loose

IoT Reaper Ransomware

New extremely large Botnet is being built – Nicknamed IoTroop or IoT Reaper

Remember Mira? The worm that prayed on unsecure IoT devices. It managed to spread and gain control using quite a simple method to gain entry – reusing the hard-coded or default password for IoT devices which were well-known by then, and the spreading was done via the EthernalBlue SMB exploit.

Now security researchers at CheckPoint and NetLab360 claim there is a new botnet being formed (called IoTroop or Reaper). This time the methods used to gain unauthorized entry are more sophisticated – no more trying to exploit traditional hardcoded and default password or to brute-force easy passwords, the Reaper malware tries to exploit different known vulnerabilities that IoT and home network devices have (more than 12 different popular vendors including Linksys, Netgear, D-Link, AVTECH and GoAhead have numerous vulnerabilities already discovered, list and links in the related articles below). The Reaper code constantly evolves, the guys behind it seems to add new exploits into the code based on new vulnerabilities being published openly on the Internet.

Another key difference between Mirai and Reaper is that as Mirai was extremely aggressive in scanning and trying to hop between network and infect other systems (which makes it easily detectable by security controls), the Reaper is stealthier in its way of spreading and tries to stay under the radar for as long as possible.

The likelihood of a successful exploit is quite high due to the fact that traditional home users do not tend to pay much attention to security and are very likely not to have patched their devices.

All sources claim this new botnet will be much bigger and stronger than Mirai – The NetLab360 researchers are claiming the C2 communication they see confirms more than 20k bots per control server and they have estimated more than 2 million vulnerable devices out there that are ripe for the infection. There is a great possibility the total number of bots can swell quite heavily in the coming weeks.

What is at stake here? How will this botnet be used?

At this stage, it is still very early to predict how this botnet will be used but most likely DDoS attacks are on the roadmap – the previous smaller Mirai successfully managed to do a DDoS with more than 1Tbps of traffic (both to Dyn internet infrastructure giant which brought down many popular web services down and French hosting company OVH).

IoT general security problems

The problems with IoT is the inherited lack of security (saying inherited because manufactures do not take security into account when building the devices) and the ever-growing number of IoT devices being deployed by users who are not savvy in networking or security best-practices (changing of default passwords, patching, lowering the attack surface). These two large issues combined with the large number of devices out there (the trend is more and more IoT devices to be manufactured and connected online) really poses quite a large security threat to the Internet community.

Some good news:

Different efforts to secure IoT devices are on the roadmap, US lawmakers are trying to pass a legislative action into forcing hardware IoT manufactures to start taking security into account and not spill out junky unsecure devices.

Also, some of the creators and botnet administrators of the Mirai, have now been arrested and expecting trial and effective sentences. This clearly shows there will be consequence for all actions related to running a botnet and malicious cyber behavior, this must be a deterrent for any future black-hats out there.

New ransomware on the loose

Remember WannaCry and Nyatya, aka NotPetya (a variant of Petya) ransomwares. There is a new one around the corner (initial spotting is on the 24th Oct), again spread predominately in the East Europe (Ukraine, Poland, Bulgaria) and Russia but also in Japan, Germany, South Korea and the USA. It is a changed version of NotPetya. It uses usually a drive-by download on hacked sites to trick the user to run a fake Flash Player installer. The horizontal spread within the compromised network this time is NOT based on the EthernalBlue SMB exploit, but Bad Rabbit uses an open tool MimiKatz to try to extract any login credentials on the infected machine and reuse them to spread itself via legit Windows management protocols such as WMI and SMB to other devices. It also uses a hard-coded list with most commonly used passwords to try to brute-force credentials access.

Most current antivirus and endpoint protection software will detect Bad Rabbit and there is a known Windows Registry based vaccination that can prevent a machine from getting infected, but Bad Rabbit shows the ransomware trend is still strong and not likely to quiet down anytime soon.

Relevant articles:

https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/

http://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/

https://4cornernetworks.com/nyatya-wiper-malware-disguised-ransomware/

https://4cornernetworks.com/wannacry-crypto-virus-outbreak/

https://securelist.com/bad-rabbit-ransomware/82851/